Skip to main content

PERIODICITY

HYDROLYSING AMIDES



This page describes the hydrolysis of amides under both acidic and alkaline conditions. It also describes the use of alkaline hydrolysis in testing for amides.

The hydrolysis of amides
What is hydrolysis?
Technically, hydrolysis is a reaction with water. That is exactly what happens when amides are hydrolysed in the presence of dilute acids such as dilute hydrochloric acid. The acid acts as a catalyst for the reaction between the amide and water.
The alkaline hydrolysis of amides actually involves reaction with hydroxide ions, but the result is similar enough that it is still classed as hydrolysis.

Hydrolysis under acidic conditions
Taking ethanamide as a typical amide:
If ethanamide is heated with a dilute acid (such as dilute hydrochloric acid), ethanoic acid is formed together with ammonium ions. So, if you were using hydrochloric acid, the final solution would contain ammonium chloride and ethanoic acid.

Note:  You might argue that because the hydrochloric acid is changed during the reaction, it isn't acting as a catalyst. In fact, it is doing two things. It is acting as a catalyst in a reaction between the amide and water which would produce ammonium ethanoate (containing ammonium ions and ethanoate ions). It is secondly reacting with those ethanoate ions to make ethanoic acid.

Hydrolysis under alkaline conditions
Again, taking ethanamide as a typical amide:
If ethanamide is heated with sodium hydroxide solution, ammonia gas is given off and you are left with a solution containing sodium ethanoate.
Using alkaline hydrolysis to test for an amide
If you add sodium hydroxide solution to an unknown organic compound, and it gives off ammonia on heating (but not immediately in the cold), then it is an amide.
You can recognise the ammonia by smell and because it turns red litmus paper blue.
The possible confusion using this test is with ammonium salts. Ammonium salts also produce ammonia with sodium hydroxide solution, but in this case there is always enough ammonia produced in the cold for the smell to be immediately obvious.

Note:  This test is OK for UK A level purposes, but there are other things which also give off ammonia on heating with sodium hydroxide solution - for example, nitriles (but you won't come across them in a practical situation at this level) and imides (but they are beyond the scope of courses at this level).






Comments

Popular posts from this blog

ALKENES and POTASSIUM MANGANATE(VII)

This page looks at the reaction of the carbon-carbon double bond in alkenes such as ethene with potassium manganate(VII) solution (potassium permanganate solution). Oxidation of alkenes with cold dilute potassium manganate(VII) solution Experimental details Alkenes react with potassium manganate(VII) solution in the cold. The colour change depends on whether the potassium manganate(VII) is used under acidic or alkaline conditions. If the potassium manganate(VII) solution is acidified with dilute sulphuric acid, the purple solution becomes colourless. If the potassium manganate(VII) solution is made slightly alkaline (often by adding sodium carbonate solution), the purple solution first becomes dark green and then produces a dark brown precipitate. Chemistry of the reaction We'll look at the reaction with ethene. Other alkenes react in just the same way. Manganate(VII) ions are a strong oxidising agent, and in the first i...