Skip to main content

PERIODICITY

ESTERIFICATION



This page looks at esterification - mainly the reaction between alcohols and carboxylic acids to make esters. It also looks briefly at making esters from the reactions between acyl chlorides (acid chlorides) and alcohols, and between acid anhydrides and alcohols.

What are esters?
Esters are derived from carboxylic acids. A carboxylic acid contains the -COOH group, and in an ester the hydrogen in this group is replaced by a hydrocarbon group of some kind. We shall just be looking at cases where it is replaced by an alkyl group, but it could equally well be an aryl group (one based on a benzene ring).
A common ester - ethyl ethanoate
The most commonly discussed ester is ethyl ethanoate. In this case, the hydrogen in the -COOH group has been replaced by an ethyl group. The formula for ethyl ethanoate is:
Notice that the ester is named the opposite way around from the way the formula is written. The "ethanoate" bit comes from ethanoic acid. The "ethyl" bit comes from the ethyl group on the end.

Note:  In my experience, students starting organic chemistry get more confused about writing names and formulae for esters than for almost anything else - particularly when it comes to less frequently met esters like the ones coming up next. Take time and care to make sure you understand!

A few more esters
In each case, be sure that you can see how the names and formulae relate to each other.

Notice that the acid is named by counting up the total number of carbon atoms in the chain - including the one in the -COOH group. So, for example, CH3CH2COOH is propanoic acid, and CH3CH2COO is the propanoate group.

Note:  You can find more about naming acids and esters by following this link to a different part of this site.
Use the BACK button on your browser to return to this page.


Making esters from carboxylic acids and alcohols
The chemistry of the reaction
Esters are produced when carboxylic acids are heated with alcohols in the presence of an acid catalyst. The catalyst is usually concentrated sulphuric acid. Dry hydrogen chloride gas is used in some cases, but these tend to involve aromatic esters (ones containing a benzene ring). If you are a UK A level student you won't have to worry about these.
The esterification reaction is both slow and reversible. The equation for the reaction between an acid RCOOH and an alcohol R'OH (where R and R' can be the same or different) is:
So, for example, if you were making ethyl ethanoate from ethanoic acid and ethanol, the equation would be:

Note:  The mechanism for the esterification reaction is covered in the catalysis section of this site. It is not required for any UK A level (or equivalent) chemistry syllabus.
If you follow this link, use the BACK button on your browser to return to this page.


Doing the reactions
On a test tube scale
Carboxylic acids and alcohols are often warmed together in the presence of a few drops of concentrated sulphuric acid in order to observe the smell of the esters formed.
You would normally use small quantities of everything heated in a test tube stood in a hot water bath for a couple of minutes.
Because the reactions are slow and reversible, you don't get a lot of ester produced in this time. The smell is often masked or distorted by the smell of the carboxylic acid. A simple way of detecting the smell of the ester is to pour the mixture into some water in a small beaker.
Apart from the very small ones, esters are fairly insoluble in water and tend to form a thin layer on the surface. Excess acid and alcohol both dissolve and are tucked safely away under the ester layer.
Small esters like ethyl ethanoate smell like typical organic solvents (ethyl ethanoate is a common solvent in, for example, glues).
As the esters get bigger, the smells tend towards artificial fruit flavouring - "pear drops", for example.
On a larger scale
If you want to make a reasonably large sample of an ester, the method used depends to some extent on the size of the ester. Small esters are formed faster than bigger ones.
To make a small ester like ethyl ethanoate, you can gently heat a mixture of ethanoic acid and ethanol in the presence of concentrated sulphuric acid, and distil off the ester as soon as it is formed.
This prevents the reverse reaction happening. It works well because the ester has the lowest boiling point of anything present. The ester is the only thing in the mixture which doesn't form hydrogen bonds, and so it has the weakest intermolecular forces.

Note:  Follow this link if you aren't sure about hydrogen bonding.
Use the BACK button on your browser to return to this page.

Larger esters tend to form more slowly. In these cases, it may be necessary to heat the reaction mixture under reflux for some time to produce an equilibrium mixture. The ester can be separated from the carboxylic acid, alcohol, water and sulphuric acid in the mixture by fractional distillation.

Note:  Providing full details for organic preparations (including all the steps necessary in cleaning up the product) is beyond the scope of this site. If you need this sort of detail, you should be looking at an organic practical book.


Other ways of making esters
Esters can also be made from the reactions between alcohols and either acyl chlorides or acid anhydrides.

Making esters from alcohols and acyl chlorides (acid chlorides)
If you add an acyl chloride to an alcohol, you get a vigorous (even violent) reaction at room temperature producing an ester and clouds of steamy acidic fumes of hydrogen chloride.
For example, if you add the liquid ethanoyl chloride to ethanol, you get a burst of hydrogen chloride produced together with the liquid ester ethyl ethanoate.

Note:  If you want to find out more about acyl chlorides, explore the acyl chlorides menu by following this link.
Use the BACK button (or GO menu or HISTORY file) on your browser to return to this page.


Making esters from alcohols and acid anhydrides
The reactions of acid anhydrides are slower than the corresponding reactions with acyl chlorides, and you usually need to warm the mixture.
Taking ethanol reacting with ethanoic anhydride as a typical reaction involving an alcohol:
There is a slow reaction at room temperature (or faster on warming). There is no visible change in the colourless liquids, but a mixture of ethyl ethanoate and ethanoic acid is formed.

Note:  If you want to find out more about acid anhydrides, explore the acid anhydrides menu by following this link.
Use the BACK button (or GO menu or HISTORY file) on your browser to return to this page.



Comments

Popular posts from this blog

PROPERTIES OF THE PERIOD 3 "HYDROXIDES"

This page looks briefly at how the chemistry of the "hydroxides" of the Period 3 elements from sodium to chlorine varies as you cross the period. I am taking the word "hydroxide" to include anything which contains either a hydroxide ion or an -OH group covalently bound to the element in question. You wouldn't usually think of some of the compounds on this page as hydroxides at all. A quick summary of the trends Sodium and magnesium hydroxides These contain hydroxide ions, and are simple basic hydroxides. Aluminium hydroxide Aluminium hydroxide, like aluminium oxide, is amphoteric - it has both basic and acidic properties. Note:   I have no real idea of how to describe aluminium hydroxide on the ionic-covalent spectrum. Part of the problem is that there are several forms of aluminium hydroxide. For example, when it is prepared by adding ammonia solution to a solution containing hexaaquaalum...

REACTIONS OF THE GROUP 1 ELEMENTS WITH OXYGEN AND CHLORINE

This page mainly looks at the reactions of the Group 1 elements (lithium, sodium, potassium, rubidium and caesium) with oxygen - including the simple reactions of the various kinds of oxides formed. It also deals very briefly with the reactions of the elements with chlorine. The Reactions with Air or Oxygen General These are all very reactive metals and have to be stored out of contact with air to prevent their oxidation. Reactivity increases as you go down the Group. Lithium, sodium and potassium are stored in oil. (Lithium in fact floats on the oil, but there will be enough oil coating it to give it some protection. It is, anyway, less reactive than the rest of the Group.) Rubidium and caesium are normally stored in sealed glass tubes to prevent air getting at them. They are stored either in a vacuum or in an inert atmosphere of, say, argon. The tubes are broken open when the metal is used. Depending on how far down the Group you are...